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ABSTRACT 

We call a field K semi-real closed if it is algebraically maximal with respect 

to a semi-ordering. It is proved that  (as in the case of real closed fields) 

this is a Galois-theoretic property. We give a recursive description of all 

absolute Galois groups of semi-real closed fields of finite rank. 

I n t r o d u c t i o n  

By a well-known theorem of Artin and Schreier [AS], being a real closed field is a 

Galois-theoretic property. More specifically, a field K is real closed if and only if 

its absolute Galois group G(K) is of order two. This enables one to reflect many 

arithmetical properties of orderings on K as group-theoretic properties of G(K). 
However, in studying the structure of formally real fields, the collection of all 

orderings is in many respects too small. For many uses one needs to consider the 
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broader collection of the semi-orderings (also called q-orderings) on K.  These 

arithmetical objects, introduced by A. Prestel and studied mainly by him [P], 

by L. Brhcker [Brl] and by Becker and Khpping [BK], are defined as follows: 

A semi -o rde r ing  on K is a subset S C K such that 1 E S, K ~- S U - S ,  

S M - S  = {0}, S + S = S and K2S = S (here K 2 denotes the set of all squares 

in K).  Thus, an ordering is a semi-ordering closed under multiplication. 

In the present paper we study the absolute Galois groups of the semi- rea l  

closed fields, that is, fields K that admit a semi-ordering which does not extend 

to any proper algebraic extension of K. Their importance can be realized, e.g., 

from the following local-global principle for isotropy, essentially due to Prestel 

[P, Th. 2.9]: Assume that K is pythagorean (i.e., K is formally real and every 

sum of squares in K is a square in K) and let ~ be a quadratic form over K. 

Then ~ is isotropic in K if and only if it is isotropic in every semi-real closed 

algebraic extension of K." 

Inspired by Artin-Schreier's theorem, we first prove that being semi-real closed 

is a Galois-theoretic property. In other words, if K and L are fields with G(K) -~ 

G(L) and if K is semi-real closed then so is L (Theorem 5.1(c)). However, unlike 

in the case of real closed fields, there are infinitely many profinite groups that 

appear as absolute Galois groups of semi-real closed fields. In section 5, we give 

a recursive description of all such finitely generated groups. For example, the 

groups of rank < 4 in this class are Z/2Z,  Z22)~Z/2Z and Z3)~Z/2Z. Here Z2 

is the additive group of the dyadic integers (written multiplicatively) and the 

involution in Z/2Z acts by inversion. 

ACKNOWLEDGEMENT: This research has begun while both authors were stay- 

ing at the Heidelberg University in summer 1991, supported by the Deutsche 

Forschungsgemeinschaft (Efrat) and the Alexander-von-Humboldt Foundation 

(Haran). We wish to thank Moshe Jarden for several helpful remarks. 

1. Realization of certain group-theoretic constructions 

In [JW] Jacob and Ware show that  the class of all maximal pro-2 Galois groups 

of fields is closed with respect to free pro-2 products and certain constructions 

of semi-direct products. In this section we strengthen a few of their methods in 

order to realize such constructions as the absolute Galois groups of fields (see 

also [Br3, w [JWd, w and [K, w 
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To achieve more generality, we fix a prime number p. Recall that  a valued 

field (K, v) is p -hense l ian  if Hensel's lemma holds in it for polynomials that 

split completely in the maximal pro-p Galois extension K(p) of K. Equivalently, 

(g ,  v) is p-henselian if v extends uniquely to KiP ) [Br2, Lemma 1.2]. A p- 

hense l i za t ion  of a valued field (K, v) is a p-henselian separable immediate pro- 

p extension of it. It is the decomposition field of an extension of v to K(p) 

[Br2, p. 151]. We denote the residue field of a valued field (K, v) b y / ( .  and its 

value group by F. .  The Galois group of a Galois extension L / K  is denoted by 

~(L /K)  and the algebraic closure of K is denoted b y / ( .  The following lemma 

is well-known and is brought here for convenience. 

LEMMA 1.1: Let (F, v) be a p-henselian valued field that contains tile pth roots 

of unity. Suppose that char f ', ~ p. Then there is a natural split exact sequence 

(1) 1 ~ Z~  ~ G(F(p)/F) ~ G(~',,(p)/F.) ~ 1 , 

with m = dim~p F,/pFv. 

Proof'. Let v(p) be the unique extension of v to F(p). Since char F ~ p and F 

contains the pth roots of unity, every finite Galois subextension F ~ of F(p) /F is 

obtained as a finite tower F = F0 C F1 C . . .  C Fn = F' with Fi+l = Fi(er 

ai E Fi, by [La, Ch. VIII, Th. 10]. It follows that F(p)v(p)/['v is a p-extension. 

Since char Fv ~ p and by [En, Th. 14.5], this extension is Galois. F~rthermore, 

F(p) is closed under taking pth roots, hence so is F(p)v(p). Since the latter 

field contains the pth root of unity, it has no proper Galois p-extensions, by [La, 

Ch. VIII, Wh. 10] again. Therefore F(p)~(p) = Fv(P). Since (F, v) is p-henselian, 

G(F(p)/F) is the decomposition group of v(p)/v. As char F .  ~ p, the ramification 

group of v(p)/v is trivial [En, 20.18]. Let G T be the inertia group and F T the 

inertia field of v(p)/v. The value group of v(p) is A = li__mm ~!~ F. [En, Th. 20.12] 

yields a natural isomorphism G T ~- Hom(A/F,~t• where [2 is the algebraic 

closure of ~'~. Since char [2 ~ p and A/F  is p-primary, G T "~ Hom(A/F,  Q/Z) 

naturally. Therefore 

( r/r Q/Z) '~  li (Z/pnZ) m "~ m G T ~ l i m  H o r n  , = m = Z v 

Now use the natural isomorphism G(FT/F) -~ G(~'v(P)/Fv) [En, 19.8(b)] to ob- 

tain the exact sequence (1). 
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To show that (1) splits choose T C_ F • such that the values v(t), t E T, rep- 

resent a linear basis of Fv/pFv over Pp. Then L = F( t  1/p~ ] t E T, n E N) is a 

totally ramified extension of F in F(p), and its value group is p-divisible. The pre- 

vious argument (with F replaced by L) shows that the map Res : 6(F(p) /L)  

6(Pv(p) /F)  is an isomorphism. Its inverse is the desired section. I 

LEMMA 1.2: Let E be a field of characteristic # p that contains the pth roots of 

unity and such that G(E) is pro-p, and let m be a cardinal number. 

(a) There exists a field F extending E such that tr .deg(F/E) = m and for 

which there is a split exact sequence 1 --* Zp  --* G ( F ) -~2~G ( E ) --* 1; 

(b) There exists a field F extending E such that tr .deg(F/E) = m and the 

map Res: G(F) ~ G(E) is an isomorphism. 

Proof'. (a) Let Z(p) be the localization of Z at the ideal pZ, let I be a well- 

ordered set of cardinality m and let F be the direct sum of m copies of Z(p) 

indexed by I.  Then m = dim~p F/pF. Order F lexicographically with respect 

to the natural ordering of Z(v ) induced from Q. Let L = E((F))  be the field of 

formal power series ~- r6r  a~t~ with a~ 6 E and {~/ E F I a~ # 0} well-ordered. 

The natural valuation v on L is henselian and has residue field E and value group 

F [P, p. 89]. The unique extension vp of v to a p-Sylow extension Lp of L is also 

henselian. Since all separable algebraic extensions of E are pro-p and since F 

is q-divisible for all primes q # p, the extension vv/v is immediate. For each 

i 6 I define 7i 6 F by (Ti)i = 1 and (Ti)j = 0 whenever i # j E I. Denote the 

relative algebraic closure of E(t  "r~ [ i 6 I) in Lp by F. The restriction of v v to F 

is again henselian with residue field E and value group F. Therefore Lemma 1.1 

yields the split exact sequence (1). Observe that the elements t7,, i E I,  form a 

transcendence base of F / E  of cardinality m. 

(b) In the exact sequence of (a), the image of the section has a fixed field with 

the desired properties. Alternatively, one can argue as in (a), with Z(p) replaced 

byQ.  I 

PROPOSITION 1.3: Let K 1 , . . . , K m  be fields of equal characteristic such that 

G ( K 1 ) , . . . , G ( K m )  are prop groups. Then there exists a field K of the same 

characteristic such that G(K) ~ G(K1)*p . . -*p  G(K,~) (free pro-p product) and 

t r .degK < maxl<i<m tr.degKi + 1. 

Proof'. If char K1 . . . . .  char Km = p then G(K1) , . . . ,  G(Km) are free pro-p 

groups JR, Ch. V, Cor. 3.4], and therefore so is G = G(K1) *p . . .  *p G(Km). 
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If this group is finitely generated then it can be realized as the absolute Galois 

group of an algebraic extension K of the Hilbertian field Fp (t) [F J, Th. 20.22 and 

Th. 12.10]. If G is not finitely generated then G ~- G(Ki) for some i, so we can 

take K = Ki. 

We may therefore assume that char K1 . . . . .  char Km r p. Since Ki 

and its perfect closure have isomorphic absolute Galois groups, we may assume 

without loss of generality that Ki is perfect, i = 1 , . . . ,  m. In light of Lemma 

1.2(b), we may also assume that tr.degK1 . . . . .  tr.degKm. By identifying 

transcendence bases of K 1 , . . . ,  Km over the prime field, we may assume that 

they are all algebraic over a certain perfect field K0. Using Sylow's theorem, we 

may assume that G(Ko) is a pro-p group. In particular, Ko is infinite. Finally, 

let @ be a primitive root of unity of order p; since p ~ [Ko(~p) : K0], we have 

Cp ~ K0. 
Next, let x be a transcendental element over K0 and choose a l , . . . ,  am C Ko 

distinct. Let Vl , . . . , vm be the valuations on E = Ko(x) that  correspond to 

the primes (x - a l ) , . . . ,  (x - am). Zorn's lemma yields a maximal extension 

(E' ,  v~ , . . . ,  v~) of (E, Vl, . . . ,  Vm) contained in E(p) such that  for each 1 < i < 

m, v~ is unramified over vi and the residue field of v[ is contained in Ki. By 

Krull's Existenzsatz [En, Th. 27.6] this residue field must in fact coincide with 

Ki. Denoting y : (x - a l ) " "  (x - a,~), we have that v[(y) is a generator of 

v~((E') x) for each 1 < i < m. Next let E "  = E'(y 1/p~ [n E N) and for each 

1 < i < m let v~ ~ be the unique extension of v~ to E".  Then the value group of 

v~ ~ is p-divisible and its residue field remains Ki. Let (Hi, ui) be a henselization 

(hence an immediate extension) of (E", v~'). Also, let Li be a p-Sylow extension of 

Hi and let wi be the unique extension of ui to Li. Let F be a p-Sylow extension 

of E" .  Replacing Li and Hi, i = 1 . . . .  ,m,  by appropriate isomorphic copies 

over E",  we may assume without loss of generality that L 1 , . . . ,  Lm contain F.  

We show that the assertion holds with K = L1 N .-.  N Lm. Since v l , . . . ,Vm 

are distinct discrete valuations, they are independent, and therefore so are their 

extensions R e s g w l , . . . , R e s g w m  (since K / E  is algebraic). The value group of 

wi is p-divisible (in fact divisible). By Ostrowski's formula [Ri, p. 236, Th. 2] and 

since all algebraic extensions of K~ are pro-p, the residue field of wi must still be 

Ki. Hence, by [JWd, Th. 4.3], G(K) = G(L1) :~p'''$p G(Lm). But by Lemma 

1.1, Res: G(Li) ~ G(Ki) is an isomorphism, whence the assertion. | 

We denote, as customary, Kq = K(2). The following result is implicit in [JW, 
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w It shows that (with a few exceptions) valuations can be recognized inside 

the maximal pro-2 Galois group. 

PROPOSITION 1.4: Let K be a field of characteristic # 2, let A be a free abelian 

pro-2 group (i.e., A ~ Z~ for some cardinal m) and let G ~ Z/2Z,  1 be a pro-2 

group. Then the following conditions are equivalent: 

(a) G(ICq/K) ~- A~O; 

(b) G(Kq/K) ~ A>4G and the involutions in G act on A by inversion; 

(c) K is 2-henselian with respect to a valuation v such that dim~ 2 Fv/2F~ = 

rank(A) and such that G((fi:v)q/Rv) ~- G and char/~v # 2. 

If 0 z / 2 z  then (c) implies (a) and (b). 

Proof." (a)~(b):  Let e be an involution (# 1) in G(Kq/K). By [B, Satz 8, 

Kor. 3], charK = 0 and the restriction of e to {~(Qq/Q) is conjugate to the 

complex conjugation. Therefore it acts on the 2nth roots of unity by inversion. 

It follows from [JW, Th. 2.2(iii)] that e acts on A by inversion. 

(b)::v-(a): Trivial. 

(a)=~(c): This is contained in [JW, Th. 2.5] (and its proof). 

(c)=~(a): Apply Lemma 1.1 with p = 2. U 

Remark: A complete description of the action of G on A is given in [JW, 

Th. 2.3]. This, however, will not be needed in the present work. II 

Convention: In light of Proposition 1.4, whenever we consider in the sequel 

semi-direct products of groups, we assume that the action of the involutions is 

by inversion. II 

2. T h e  cha in  l eng th  of  a g r o u p  

Denote the set of all involutions (# 1) of a profinite group G by Inv(G). We 

define the cha in  l eng th  cl(G) of a profinite group G to be the supremum of 

all n E N for which there exist open subgroups Go , . . . ,  Gn of G of index _< 2 

satisfying Inv(Go) C . . .  C Inv(Gn). Also recall that  the cha in  l e n g t h  cl(K) 

of a field K is the supremum of all n E N for which there exist a0 , . . . ,  an E K 

such that  H(ao) C . . .  C H(an) (where H(a) is the set of all orderings on K 

containing a.) In the special case where G is a maximal pro-2 Galois group of a 

field, parts (a), (b), (c) and (d) of the following lemma essentially correspond to 

[L~ Prop. 8.6(1), Th. 8.28, Th. 8.27 and Prop. 8.6(2)], respectively. 
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LEMMA 2.1: Let G be a pro-2 group containing an open subgroup G' of  index 

<_ 2 such that Inv(G') = 0. 

(a) f f  G is generated by involutions and el(G) = 1 then G ~- Z/2Z; 

(b)  I r a  = r 1 , 2  . . .  , 2  r m  t h e n  el(G) = ET'=lCl(rd;  

(c) I f  G = A>~H where A is a free abelian pro-2 group and el(H) _> 2 then 

cl(G) = cl(H); 

(d) I f  G = A:~Z/2Z where A is a non-trivial free abelian pro-2 group then 

d ( G )  = 2; 

(e) cl(G) _< rank(G); 

(f) I f  K is a field then el(K) = c l (e(K))  = cl (G(Kq/K)) .  

Proof" (a) Let (I)(G) be the Frattini subgroup of G [F J, w and let p: G 

= G/O(G)  be the natural epimorphism. If G ~ Z/2Z is generated by involu- 

tions then rank(G) = rank(G) _> 2 by [F J, Lemma 20.36]. Since r is generated by 

p(Inv(G)), there exist el,e2 e Inv(G) such that p(r • p(e2). But (I)(G) is the 

intersection of all open subgroups of G of index 2. Hence there exists such a sub- 

group G1 that contains just one of el, e2. Then 0 = Inv(G t) C Inv(G1) C Inv(G), 

so cl(G) >_ 2. 

(b) Denote the set of all open subgroups of G of index < 2 by Q(G). By the 

universal property of G, the map H ~-~ (HNF1, . . . ,  HAFm)  is a bijection between 

Q(G) and Q(F1) •  • Q(Fm). Partially order Q(G) by the relation Inv(H) C_ 

Inv(H') for H , H '  E Q(G), and similarly for Q(Fi), i = 1 , . . . , m .  Also equip 

Q(rl) • . . .  • Q(rm) with the product partial order. Clearly Inv(H) C Inv(H') 

implies that Inv(H N Fi) C_ Inv(H' N Fi), i = 1 , . . . ,  m. The converse also holds 

since Inv(G) = [Jim__1 [-JgeG Inv(F~)a by [HR1, Th. A'] and since H, H '  are normal 

in G. Therefore the above bijection is an isomorphism of partially ordered sets, 

whence our assertion. 

(c) Let ~r: G --~ H be a splitting epimorphism with Ker(~r) -- A. Identify H 

with a closed subgroup of G via a section of 7r. We have Inv(G) = AInv(H). If 

H o , . . . ,  Hn are open subgroups of H of index _< 2 such that  Inv(H0) C . . .  C 

Inv(H,~) then Gi = AHi,  i = 0 , . . . ,  n, are subgroups of G of index < 2 satisfying 

Inv(G0) C . .-  C Inv(Gn). Consequently el(H) _< cl(G). If el(G) <_ 2 then we are 

done. So assume that el(G) _> 3. 

To prove that el(H) _> el(G), let Go , . . . ,  Gn, n _> 3, be open subgroups of 

G of index < 2 such that Inv(Go) C .-. C Inv(G~). It suffices to show that 

A C_ G~ for all i, since then Inv(Gi) = AInv(~r(G~)), and hence Inv(zr(Go)) C 
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�9 " C Inv(r(G,~)). 

Consider first the case w h e n i  < 1. I r A  ~ Gi we choose a �9 A \ G i ,  E �9 

Inv(Gi__l) \ Gi and 6 �9 Inv(Gi+2) \  Gi+l. Then ar �9 Inv(Gi) C_ Gi+l, so a �9 

G~+I. Since 6 r Gi we have a5 �9 Inv(G~) C_ Gi+l. This yields the contradiction 

6 �9 Gi+l. Thus A C_ Go, Gx. 

Next let 2 < i < n. Fix ~ �9 Inv(G1) (C_ G~) to obtain from what we have just 

proved that Ar C_ Inv(G1). Therefore A = (Ae)e C_ Inv(G1)e C_ Gi, as required. 

(d) Write A = B • Z2 with B a free abelian pro-2 group. Then 

A>4Z/2Z = (B • Z2) )~Z/2Z ~ B>~(Z2>~Z/2Z) -- B>~(Z/2Z "2 Z/2Z),  

so the assertion follows from (b) and (c). 

(e) Let q)(G), G and p be as in the proof of (a). We have G ~ (Z/2Z) I for a set 

I with I I I=  rank(G) [F J, Lemma 20.36]. Since ~)(G) < G', the involutions in G 

are mapped by p to involutions (5 1) in G. Now let G1, G2 be open subgroups 

of G of index < 2 such that Inv(G1) C Inv(G2). Then ~)(G) < G1, so taking 

�9 Inv (G2) \  G1 we have p(c) • p(G1). Hence (p(Inv(G1))) C (p(Inv(G2))). 

Conclude that  cl(G) < dim~ 2 G = rank(G). 

(f) This follows from Artin-Schreier's theory and its relative pro-2 version [B, 

w | 

Remark  2.2: If G = ~ ( g q / g )  for a field g then  G'  = G(Kq/K(v'-~))  has 

index < 2 in G and Inv(G ~) = 0, by [B, Satz 8, Kor. 3]. Therefore Lemma 2.1 

applies to G. Also, recall that K is pythagorean if and only if G is generated 

by involutions [B, w Kor. 2 and w Satz 6]. Therefore, in this case G ~ can be 

intrinsically defined as the closed subgroup of G generated by all products of two 

involutions. Equivalently, G t is the unique open subgroup of G of index 2 for 

which Inv(G') = 0. | 

3. Galois groups of pythagorean fields 

Pythagorean fields of finite chain length have been extensively studied by Mar- 

shall [M], Jacob [J], Min~5 [Mi], Craven [C], and others and their structure is well 

understood. Specifically, let C be the minimal collection of isomorphism types of 

pro-2 groups such that 

(i) Z/2Z �9 C; 

(ii) If G1 , . . . ,Gm �9 C then G 1 . 2 " " , 2  G m � 9  C; 
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(iii) If H C C and if A is a free abelian pro-2 group then A>4H C C. 

The following result is of fundamental importance: 

THEOREM 3.1: The following conditions on a pro-2 group G are equivalent: 

(a) G ~- G(K) for some pythagorean field K of finite chain length; 

(b) G ~- g (Kq/K)  for some pythagorean field K of finite chain length; 

(c) a e c .  

Proo~ The implication ( a )~ (b )  is trivial, while the implication (b )~ (c )  is 

proved by Mins [Mi]. To prove that (c )~(a ) ,  let ~D be the collection of an 

groups that  satisfy (a). Clearly, Z /2Z = G(•) E :D. Also, if G 1 , . . . ,G ,~  are 

pro-2 groups generated by involutions then so is G1 *2 "'" *2 Gin. It follows 

from Proposition 1.3 and Lemma 2.1(b)(f) that :D is closed under taking free 

pro-2 products. Finally, if H E /3 and if A is a free abelian pro-2 group then 

the products he, where a E A and e C Inv(H),  are involutions that generate 

A>~G. Use this together with Lemma 1.2(a) and Lemma 2.1(c)(d) to obtain that 

A>~H E l). Conclude that C C_/), as asserted. I 

Unfortunately, the above recursive presentation of G E C is not unique: one 

can of course permute G 1 , . . . ,  Gm in (ii), or use the isomorphisms Z2~Z/2Z  = 

Z/2Z*2 Z/2Z and A>4(B>~H) "~ (A x B ) ~ H  for free abelian pro-2 groups A and 

B and for a pro-2 group H. However, as our next result shows, apart from that  

the construction is unique. 

Call a pro-2 group H ~ 1 d e c o m p o s a b l e  if it can be written as H1 *2 H2, 

with H1, H2 ~ 1 pro-2 groups. Otherwise call it i n d e c o m p o s a b l e .  Let Z(H) 

denote the center of H. For every G E C let G' be the unique open subgroup of 

G such that  (G:  G') = 2 and Inv(G') = ~ (Remark 2.2). 

PROPOSITION 3.2: Let Z/2Z  ~ G E C. 

(a) There exists a free abelian pro-2 group A together with indecomposable 

groups H1 , . . . ,Hm E C, 2 < m < c~, such that G ~ A>~(H1 *2 " " * 2  H,~) 

and e l (H1) , . . . ,  cl(Hm) < el(G). 

(b) This presentation of G is unique up to a permutation of H1 , . . . ,  Hm. 

(c) G is indecomposable ff and only ff A r 1 in the presentation in (a). 

For the proof we need a few lemmas. 
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LEMMA 3.3: Suppose that G = A ~ H ,  where A is a free abelian pro-2 group, 

H = H1 *2 "'" *2 Hm and H 1 , . . . ,  Hm # 1. I f  G is the maximal pro-2 Galois 

group of a pythagorean field then so are H , / / 1 , . . . ,  Hm. 

Proof." Since H, H 1 , . . . , H m  are closed subgroups of G they are also maxi- 

mal pro-2 Galois groups of fields. On the other hand, since H,  H 1 , . . . ,  H ~  are 

quotients of G, they are generated by involutions. Hence the above fields are 

pythagorean. II 

LEMMA 3.4: Suppose that G = A>~H E C, where A is a free abelian pro-2 group, 

H = H1.2  " " ' 2  Hm, H 1 , . . . , H m  # 1 and 2 < m < cr Then: 

(a) H, H 1 , . . . ,  Hm �9 C and c l (H1) , . . . ,  cl(Hm) < el(G); 

(b) Z(G')  = A x Z(H' ) ;  

(c) I f Z ( H ' )  r 1 then m = 2 and H1 = H2 ~ Z/2Z;  

(d) I f  m = 2 and Hi =" H2 = Z/2Z,  then Z (H ' )  = H '  =" Z2 and G/Z(G ' )  =" 

z/2z; 

Proo~ (a) By Lemma 2.1(b)(c), c l (H1) , . . . , c l (Hm)  < cl(G) < oc. Together 

with Lemma 3.3 this gives that H, H 1 , . . . ,  Hm �9 C. 

(b) As (G : A H ' )  = 2 and AH'  contains no involutions, G' = AH' .  Further- 

more, H '  is generated by products of two involutions. Hence it acts trivially on 

A, whence G' = A x H'. Thus Z(G t) = A x Z(H' ) .  

(e), (d) Use Kurosh subgroup theorem for open subgroups of free pro-2 products 

[BiNW] to decompose H '  as a free pro-2 product 

H '  It(2) tt(2) ( u '  n = U1<i<m uoez(i)~ . . . .  H[)  *2 , 

where for each 1 < i < m, Z(i) C H, H = "~cr~(i) Hi aH~, and where 1 # is a free 

pro-2 group of rank ~ i = I [ ( H  : g ' )  - [E(i)I ] - ( g :  g ' )  + 1. Since ( g :  g ' )  = 2 

and Hi ~ H' ,  we have HiaH'  = HiH 'a  = H a  = H, whence tZ(i)l = 1 for all i. 

It follows that  H '  decomposes as (H'  n H1) ~ *2 " "  *2 (H' Cl Hm/"m *2 F,  where 

a l , . . . ,  am �9 H and rank(/~) = m - 1 _> 1. We can further decompose F as the 

free pro-2 product of m - 1 copies of Z2. 

Now suppose that Z ( H  ~) # 1. Then, by [HR1, Th. A'], just one free factor in 

this decomposition of H ~ is non-trivial. Therefore H ~ n H1 . . . . .  H ~ N Hm = 1 

and m = 2, whence (c). 

To prove (d), suppose that m = 2 and HI = H2 ~ Z/2Z.  Then H' = T' ~- Z2. 

Therefore, (b) implies that G/Z(G ' )  -~ H / Z ( H ' )  = H / H '  ~- Z/2Z.  | 
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Proo[ of Proposition 3.2(a): Every group H E C can be constructed in a finite 

number of steps of the form (i)-(iii). Denote the minimal number of steps required 

by n(H). We first prove that  G TM A>~H for some free abelian pro-2 group A 

and for some group H E C which is either of order 2 or is decomposable. If G 

itself is decomposable, then we take A = 1 and G -- H. So suppose that  G is 

indecomposable. Since G ~ Z/2Z,  the last of n(G) steps in a construction of 

G cannot be of the form (i) or (ii). Hence G ~ A~H,  where A r 1 is a free 

abelian pro-2 group, H E C and n(H) = n(G) - 1. Assume by contradiction 

that  H is not of order 2 and is indecomposable. The same argument shows 

that  H -- A>~/t for a free abelian pro-2 group ,3, and a g r o u p / ~  E C such that  

n(H) = n(H) - 1. Then G ~ (A • A ) ~ / t  is a presentation of G which requires 

only n([I) + 1 = n(G) - 1 steps. This contradiction shows that  H is indeed either 

of order 2 or is decomposable. 

In the first case A r 1, because G ~ Z/2Z.  Hence we get as in the proof of 

Lemma 2.1(d) that  G ~ B>~(Z/2Z *2 Z /2Z)  for some free abelian pro-2 group 

B. In the second case we use Lemma 2.1(b) to write H = H1 *2 "'" *2 H,~, with 

H 1 , . . . ,  Hm indecomposable and 2 < m < co. By Lemma 3.4(a), H 1 , . . . ,  H,~ E C 

and c l (H1) , . . . ,  cl(Hm) < cl(G). 

Proof of Proposition 3.2(c): Suppose that  A r I and G = Gl*2G2 with G1, G2 r 

1. Apply Lemma 3.4 with respect to the decomposition G = lm(G1 *2 G2) 

to obtain that  either Z(G') = 1 or both  Z(G') ~ Z2 and a / z ( a ' )  ~= z / 2 z .  

On the other hand, apply Lemma 3.4 with respect to the decomposition G --- 

A>~(H1 *2 " " * 2  /arm), to obtain that  either Z(G') = A or Z(G') ~ A x Z2. 

However Z(G') = A is impossible, since it implies that  both  Z(G I) r 1 and 

G/Z(G') ~ H1 *2""*2 Hm ~ Z/2Z.  Conclude that  Z(G t) -~ A x Z2, and 

therefore A = 1 contrary to the assumption. The converse implication is trivial. 

LEMMA 3.5: Let G E C be indecomposable. There exists a direct system Gx, 

A E A, ordered by inclusion, of finitely generated indecomposable groups in C 

such that G = (G~I A e A). 

Proo~ We use induction on el(G). If el(G) = 1 then G ~ Z / 2 Z  by Lemma 

2.1(a), so the assertion is clear. Otherwise G ~ Z /2Z,  and therefore G is pre- 

sented as in Proposition 3.2(a), with A r 1. In light of Lemma 3.4(a) we may 

assume that  systems Hi,x(/), A(i) E A(i), have already been constructed for Hi, 

1 _< i _< m. Take G~, A E A, to be the collection of all closed subgroups 
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Ao(HI,~(1), . . . ,  Hm,~(m)) TM Ao)~(HI,~O) * 2 " "  *2 Hm,~(m)) (cf. [HR3, Cor. 5.4]) 

of G with A0 r 1 a finitely generated subgroup of A. These groups are indecom- 

posable by Proposition 3.2(c) and generate G. | 

LEMMA 3.6: Assume that G = G l * 2 ' '  "*2Gn = Hi*2"" . .2Hm, with G1,. . . , Gn, 

H I , . . . ,  Hm E C indecomposable. Then n = m and for some permutation 7r of 

{1 , . . . ,  n}, Gi is conjugate to H~(1), i = 1 , . . . ,  n. 

Proof: Use Lemma 3.5 to construct for all 1 < i < n and all 1 < j _< m direct 

systems G~,~, A �9 A(i) and Hj,~, # �9 M( j ) ,  of finitely generated indecomposable 

groups in C such that Gi = (G~,~[ A �9 A(i)) and Hj = (Hj,~I Iz �9 M(j )} .  

Fix 1 < i < n and A �9 A(i). By Kurosh subgroup theorem for finitely generated 

closed subgroups of free pro-2 products ([n, Wh. 9.7], [Ha2, Th. 4.4], [Me]), 

tt(2) It(2) [G Fi,;~ , Gi,~ = Ul<j<m Uoc~(i,j,~)t i,~ N H i )  *2 

where Fi,~ is a free pro-2 group and G = U~e~(i,j,x) HjaGi,x for all 1 ~ j _< m. 

Since G~,x is generated by involutions, so is its quotient Fi,x, hence Fi,~ = 1. 

As Gi,~ is indecomposable, there is precisely one pair 1 <_ j = j(i ,  A) _< m, 
HO( i,~ ) a = a(i,A) �9 ~( i , j ,A)  for which Gi,~ A H S r 1, and in fact Gi,x <_ j(~,~). 

But the Gi,~, A �9 A, form a direct system and any two distinct conjugates of 

H1,. Hm have trivial intersection [HR1, Th. B']. Hence j(i ,  A) and H ~ do �9 ., j(~,~) 

not depend on A. We may therefore write j ( i )  = j(i ,  )~) and a(i) = a(i, )~). Then 

Gi = <Gi,~l A �9 A(i)) _</-/j~(~). 

Conversely, for each 1 _< j _< m the same argument yields 1 _< i = i( j)  <_ n and 

~'(j) �9 G such that Hj _< G ":(j)i(j) . We have Gi _< I-Ija(~) ) _< G ~(j(i))~ . Projecting 

into the direct product G1 x . . .  x Gin, we get that  i = i( j( i ))  for all 1 < i < n. 

Similarly, j = j ( i ( j ) )  for all 1 _< j _< m. It follows that n = m. Without 

loss of generality, j ( i )  = i and i( j)  = j for all 1 < i , j  <_ n. In particular, 

G~ _< H~ '(~) _< G~ (~)a(~) for all 1 < i < n. By [Ha1, Th. B'] again, we must have 

here equalities, so G~ and Hi are conjugate. | 

Proof of Proposition 3.2(b): If G/Z(G' )  ~- Z/2Z then certainly Z(G')  r A. By 

Lemma 3.4, m = 2 and H1 = H2 - Z/2Z.  Also, the isomorphism type of A is 

uniquely determined by Z(G')  ~ A x Z2. If on the other hand, G/Z(G ' )  ~ Z/2Z 

then by Lemma 3.4, Z(G ~) = A. Thus, in this case as well, G determines A, and 

hence also H ~- G/A.  By Lemma 3.6, the groups H 1 , . . . , H m  are determined 

inside H up to a permutation and conjugacy. 1 
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4. C ove r s  o f  fields by  s e m i - o r d e r i n g s  

We say that  a semi-ordered field (K, S) is q u a d r a t i c a l l y  s emi - r ea l  c losed  if 

it has no proper pro-2 extension to which S extends. By [Brl, Folg. 2.18] or [P, 

Th. 1.26], a semi-ordering S on a field K always extends to a 2-Sylow extension 

of K. We therefore have: 

LEMMA 4.1: A semi-ordered tield (K, S) is semi-real closed if and only if it is 

quadratically semi-real closed and G(K) is pro-2. 

LEMMA 4.2: A subset S o f a  field K is a semi-ordering if and only if the following 

conditions hold: 

(i) 1 e S; 
(ii) K2S = S; 

(iii) S N - S  = {0}; 

(iv) K = S u -S ;  

(v) Every (non-empty) sum of finitely many non-zero elements o r s  is non-zero. 

Moreover, (K, S) is quadratically semi-real closed if and only if in addition it 

satisfies: 

(vi) K 2 = {x E K[ x S =  S}. 

Proo~ The first assertion is straightforward. Also, a semi-ordered field (K, S) 

is quadratically semi-real closed exactly when S extends to an extension K ( v ~ ) ,  

x E K, if and only if x E K 2. By [Brl, Folg. 2.18], this is equivalent to (vi). 

1 

4.3 Remarks: (a) Let (K, S) be a semi-ordered field. It is straightforward to 

check that  (vi) holds if and only if K \ K 2 = - S .  S. 

(b) It follows from Lemma 4.1 and Lemma 4.2 that the classes of semi-ordered 

fields, quadratically semi-real closed fields and semi-real closed fields are elemen- 

tary in the first-order language of rings augmented by a unary relation symbol S 

which is interpreted as a semi-ordering. 1 

From [Brl, Folg. 2.19d] we get: 

COROLLARY 4.4: A quadratically semi-real dosed field is pythagorean. 

Now let Si, i E I,  be a collection of semi-orderings on a field K. It is straight- 

forward to check that T = Nie i{x  E K[ xSi = S~} is a preordering on K [L, 

Def. 1.1]. In this case we say that  Si, i E I, form a co v e r  o fT .  When T = ~ K 2 
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is the set of all sums of squares in K we say that S~, i E I, cover  K. For example, 

if T is an arbitrary preordering on the field K,  then the collection Si, i E I,  of 

all orderings of K that contain T form a cover of T. Indeed, T = NicI S i [L ,  

Th. 1.6] and Si = {x E K[ xSi = S~} for all i E I. 

Definition: The cove r ing  n u m b e r  cn(T) of a preordering T on a field K is the 

minimal size (possibly c~) of a cover of T. For a field K we set cn(K) = cn(~-~. K 2) 

and call it the cover ing  n u m b e r  o f  K. I 

4.5 Remarks: (a) Let K be a pythagorean field. Then cn(K) = 1 if and only 

if K is quadratically semi-real closed (Lemma 4.2). 

(b) For every semi-ordered field (K, S), Zorn's lemma yields a maximal ex- 

tension (K,S),  fi[ C_ Kq, such that S M K = S. Use this fact together with 

[Brl, Folg. 2.18] to conclude that a collection S~, i E I, of semi-orderings on a 

pythagorean field K forms a cover if and only if K = NiEI/ ( i  for every collection 

(Ki, Si), i E I,  of quadratically semi-real closed subextensions of Kq/K such that 

S~ n K  = S~ for all i E I. 

(c) Suppose that the collection Si, i E I, is cover of K but that no proper 

subcollection of it is a cover. Then Sil # aSi2 whenever il, i2 E I, il # i2, and 

a E K. Otherwise, {x E K I xS~ = Sil} = {x E K[ xSi2 = S~2}, hence S~, 

i E I \{ i2},  is also a cover of K. I 

5. T h e  m a i n  r e su l t s  

We first show that being semi-real closed is a Galois-theoretic property. 

THEOREM 5.1: Let K and L be fields. 

(a) I f  g(Kq/K) ~- ~(Lq/L) with K pythagorean then cn(K) = cn(L); 

(b) If  ~(Kq/K) ~- G(Lq/L) and K is quadratically semi-real closed then so is 

L; 

(c) I f  G(K) ~- G(L) and K is semi-real closed then so is L. 

Proof." For an arbitrary field K Kummer theory gives 

K • • _~ HI(G(K)) ~_ HI(~(Kq/K))  = Hom(G(Kq/K), Z/2Z)  

canonically (the cohomology groups taken with respect to the module Z/2Z and 

the trivial actions and the homomorphisms being continuous.) Let r be the image 

of the square class of - 1  in H~(G(Kq/K)) under this isomorphism. We express 
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the fact that  K has a cover Si, i E I, in terms of HI(6(Kq/K))  and r as follows: 

For each i E I let Ai be the subset of HI(6(Kq/K))  corresponding to the set of 

square classes in S~. Then conditions (i)-(iv) of Lemma 4.2 say that 0 E A~ and 

HI(G(Kq/K)) = A~ U(r + Ai). To express in this way condition (v), we use the 

canonical cohomological representation of the Witt-Grothendieck ring by means 

of generators and relations [S, Satz 1.2.1] W(K)  ~ Z[HI(G(Kq/K))]/J, where J 

is the ideal generated by all formal sums (in the group ring) a +/7 - "~ - 5 such 

that a,/3,7, (~ E H:(G(Kq/K)), a+f i  = 7+(~ in HI(G(Kq/K)) and atA~3 = 7U6 

in H2(~(Kq/K)). By Witt 's  decomposition theorem [P, Th. 10.4], condition (v) 

for S~ is thus equivalent to the following statement: For any a l , . . . ,  an E Ai, the 

formal sum al + ' "  +an in Z[HI(G(Kq/K))] is not congruent to any formal sum 

~1 + " '"  + ~n--2 -[- 0 + ~) modulo J. Also, in the above notation, Si, i E I, cover 

K if and only if Niel{a e HI(~(Kq/K) [ a + Ai = Ai} = {0}. 

Now if G(Kq/K) is generated by involutions then by [B, w Satz 6], one 

can recognize r as the only continuous homomorphism in HI(G(Kq/K)) with 

torsion-free kernel. Therefore for pythagorean fields the above information can 

be expressed in terms of G(Kq/K) alone. This proves (a). 

(b) follows from (a), by Corollary 4.4 and Remark 4.5(a); (c) follows from (b) 

by Lemma 4.1. I 

Let G ~- G(Kq/K) with K a pythagorean field. We define cn(G) = cn(K), 

and call it the cover ing n u m b e r  of  G. By Theorem 5.1(a) this definition is 

independent of the choice of K. From Theorem 3.1, Lemma 4.1, Corollary 4.4 

and Remark 4.5(a) we obtain (with C as in w 

COROLLARY 5.2: The following conditions on a pro-2 group G are equivalent: 

(a) G is the absolute Galois group of a semi-real closed field of finite chain 

length; 

(b) G is the maximal pro-2 Galois group of a quadratically semi-real closed 

tTeld of finite chain length; 

(c) G E C and cn(G) = 1. 

To make this characterization effective, we now develop a method for the com- 

putation of cn(G), where G E C is presented as in Proposition 3.2(a). This is 

accomplished in Proposition 5.6 and Proposition 5.7 below. 

The following result is contained in [E, Cor, 4.4]. 



72 I. EFRAT AND D. HARAN Isr. J. Math. 

LEMMA 5.3: Let K 1 , . . . ,  ffm be extensions of a field K of characteristic # 2 

which are contained in Kq and assume that ~ ( K q / K )  = ~(Kq/[(1) *2 " " * 2  

G(Kq/K,n).  Then: 
- x  - x  2 (a) KX / (K•  2 ~- K~ /([{~)2 x . . .  x Km/ (K m )  canonically; 

(b) A K-quadratic [orm that is [~i-isotropic for all 1 < i < m is K-isotropic. 

LEMMA 5.4: Let [~ l , . . . , [ {m  be extensions of a t~eld K contained in Kq and 

assume that ~ ( K q / K )  = O(Kq/[Q) .2 .  . . .2  ~(Kq/[{m).  Let S be a semi-ordering 

on K.  Then S extends to a unique [{.i, 1 < i < m. 

Proo~ To prove the existence of such an extension it suffices by [P, Lemma 

1.24] to find 1 < i < m such that  every quadratic form with coefficients in S 

is /(i-anisotropic. Assume that  for each 1 < i < m there exists a k~-isotropic 

quadratic form ~oi with coefficients in S. Then the sum ~Ol _L . . .  • ~om is /~ -  

isotropic for all 1 < i < m. By Lemma 5.3(b) it is K-isotropic (notice that  since 

K admits a semi-ordering, char K = 0). This contradicts condition (v) of Lemma 

4.2. 

To prove the uniqueness, assume that  S, S '  are semi-orderings on Ki, Kr re- 

spectively, where 1 _< i , i '  <_ m, i # i'. We show that  S n K  # S ' n K .  Use Lemma 

5.3(a) to obtain a E K • such that  a - 1 mod (/~ix) 2 and a - - 1  mod (/~ff)2. 

Then a E S' and a ~ S',  as required. | 

5.5 Remarks: (a) If  S is an ordering then Lemma 5.4 asserts that  every involu- 

tion in 6 ( K q / K )  is conjugate to an involution in a unique 6(Kq/fi2~), i = 1 , . . . ,  m 

[B, Satz 8, Kor. 3]. This is proved by purely group-theoretic methods in [HR1, 

Wh. A']. 

(b) Suppose that  G -~ A>~H, where A is a free abelian pro-2 group, H = 

H1 *2 "'" *2 H,~ and H I , . . . , H , ~  # 1. If  G is a maximal pro-2 Galois group 

of a pythagorean field then so are H, H 1 , . . . ,  Hm (Lemma 3.3), hence cn(H),  

cn (H1) , . . . ,  cn(Hm) are well-defined. Therefore the statements of the following 

two propositions make sense. | 

PROPOSITION 5.6: Let G be a maximal pro-2 Galois group of a pythagorean 

field, and suppose that G = G1 *2 �9 "" *2 Gm for some pro-2 groups G 1 , . . . ,  Gin. 

Then cn (a )  = c n ( a l )  + . . .  + cn(am) .  

Proos Let K be a pythagorean field with G "~ G(Kq/K)  and l e t /~1 , . . . , / ~ ,n  be 

the fixed fields in Kq of G 1 , . . . ,  Gin, respectively. Since G 1 , . . . ,  Gm are quotients 
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of G and K is pythagorean, so are /~1 , . . . , /~m.  The pythagoreanity of K also 

implies that char K = 0. We need to show that cn(K)  = cn(/~l) + . . .  + cn(/~m). 

Take a cover S~, i E I,  of K. For each i E I there exists a unique 1 ~ 9(i) < m 

and a semi-ordering Si on/~0(0 such that  Si = K M :~i (Lemma 5.4). We claim 

that for each 1 _< j _< m, the semi-orderings Si, i E 9-1( j ) ,  form a cover of 

/( j .  Indeed, take x C /~jx such that xSi = Si for all i E 0-1( j ) .  We need to 

show that x E / ~ .  By Lemma 5.3(a) we may assume that  x C K • and that 

x E / ( ~  whenever l ~ j ,  1 < l < m. Then x:~i = Si, hence xSi = Si, for all i C I. 

Conclude that  x E K 2, as claimed. It follows that cn(K)  > cn( /~ l )+ . .  "+cn(/(m). 

To prove the converse inequality, take for each 1 _< j <_ m a cover S~, i E Ij, 

of /~ j  having cn(/~j) elements. We show that  the cn(/~l) + . . .  + cn(/~m) semi- 

orderings S~ = S~MK, i C I = I1 . U . . . . U I m ,  cover K.  Indeed t a k e x  C K 

such that  x(Si M K) = S~ M K for every i E I. Use Lemma 5.3(a) to obtain that 

x:~ = :~i for every i E I. Then x ~ /~2  for each 1 _< j < m. By Lemma 5.3(a) 

again, x ~ K 2, as desired. I 

For x E R, let Ix 1 be the smallest integer > x. 

PROPOSITION 5.7: Let G be a maximal pro-2 Galois group of a pythagorean field 

and suppose that G = A>4H, with A a free abelian pro-2 group and cn(H) < c~. 

Then 

[cn(H)/2rank(A) 

c n ( a )  = 2 

1 

rank(A) < oo, (A, H)  # (E2, Z/2Z)  

A ~ Z2, H ~- Z /2Z 

rank(A) = c~ . 

rank(A) < c~ and H ~ Z/2Z.  Let K be a pythagorean Proof'. CASE (I): 

field with G ~- G(Kq/K) .  By Proposition 1.4, K is 2-henselian with respect to a 

valuation v such that  dim~ 2 v ( g •  • = rank(A) and ~((/~v)q//~v) = g .  

We denote for simplicity k = /~v and observe that  k is pythagorean. Choose 

T C K • such that 1 E T and such that  the elements v(t), t E T, form a 

representatives system for v ( g  • ) mod 2 v ( g  • ). Then IT[ = 2 rank(A). Also let U 

be the set of all units of K with respect to v and let 5 denote the residue of a E U 

in k. Note that any element of K can be written as ax2t with a C U, x E K and 

t E T. By Hensel's lemma and since char k = 0, the 1-units of K with respect to 

v are in K 2. 
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Now let S~, i E I ,  be a cover of K with III = ca (K)  = ca(G). For each 

i �9 I and t �9 T, put Ei,t = 1 if t E Si and si,t = - 1  otherwise. The set 

s( i , t )  = {ci,ta] a E U, at E Si} is a semi-ordering on k by Springer's theorem 

[L, Th. 4.6]. We show that  s(i, t), i E I ,  t �9 T, cover k. Indeed, take a E U such 

that  f is(i , t)  = s( i , t )  for all i E I and t �9 T. If b �9 U, x E K • and t E T satisfy 

bx2t �9 Si, then ~i,tb �9 s(i, t), so ~i,ta--b �9 s(i, t). Thus abx2t �9 Si, proving that  

aSi = S~. It  follows that  a �9 K 2, hence ~ E k 2, as desired. Conclude that  cn(G) • 

2 rank(A) = ]I • T] >_ cn(k) = cn(H) and therefore cn(G) > [cn(H)/2rank(A) 1. 

To complete the proof in this case, we construct a cover of K which consists of 

n = [cn(H)/2r~nk(A) 1 = [cn(k)/iTI1 elements. Let I be a set of cardinality n and 

fix i0 E I .  Choose a subset To o f T  containing I such that  cn(k) = ( n - 1 ) l T i + l T o  ]. 

Let R be the set of all pairs (i, t) E I • T such that  either i r i0 or both  i = i0 

and t �9 To. By assumption, k has a c o v e r  s( i , t ) ,  ( i , t)  E R. For t E T \ T o  

define s(io, t) to be an ordering on k that  is different from s(io, 1) (note that  

since G(kq/k)  ~ Z/2Z,  the pythagorean field k is not uniquely ordered, by [B, 

Satz 3]). In particular, ~tS(io, 1) r s(io, t)  for all a E k. By Remark 4.5(c) and 

since cn(k) < oc, this inequality in fact holds for all 1 r t �9 T. 

For i �9 I denote 

S~ = {ax2t] a E U, x E K,  t E T, ~t E s ( i , t ) }  . 

Use again Springer's theorem to verify that  S~ is a semi-ordering on K.  We 

prove that  Si, i E I ,  form a cover of K.  To this end we take b E U, x E K and 

t E T such that  bx2tSi -- Si for all i E I ,  and show that  b E K 2 and t = 1. 

Indeed, for a E U we have under this condition that  ~ E s(i0, 1) if and only if 

abt E btSio = Sio. Therefore bs(io, 1) = s(i0, t), which can happen only when 

t = 1. ThusbS~ = S ~ , s o b s ( i , t ' )  = s( i , t ' )  for a l l i  E I a n d t '  E T. As s( i , t ' ) ,  

( i , t  t) �9 R,  cover k, this implies that  b �9 k 2. By Hensel's lemma b �9 K 2, as 

required. 

CASE (II) :  rank(A) = oc and H ~ Z/2Z.  As in the third paragraph of the 

proof of Case (I) (with n = 1 and ! = {i0}) one shows that  cn(G) = 1. 

CASE ( I I I ) :  A # 1 and H -~ Z/2Z.  Write A = B x Z2 with B free abelian pro- 

2. Then A)4H ~- B)~(Z2)~Z/2Z) - B ~ ( Z / 2 Z * 2 Z / 2 Z ) .  The group Z / 2 Z * 2 Z / 2 Z  

can be realized as a maximal  pro-2 Galois group of a pythagorean field (Theorem 

3.1), and therefore Proposition 5.6 yields cn(Z/2Z *2 Z /2Z)  = 2. We also have 
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rank(A) = rank(B) + 1. The preceding two cases (with A and H replaced by 

B and Z / 2 Z . 2  Z/2Z,  respectively) give us that cn(G) = [2/2rank(B) 1 = 1 if 

2 _< rank(A) < c~ and also cn(G) = 1 if rank(A) = ~ .  Finally, if A = Z2 then 

B = 1 so cn(G) = 2. 

CASE (IV): A = 1, H - Z/2Z. Trivial. | 

COROLLARY 5.8: Let G be a maxima/pro-2 Galois group of a pythagorean field. 

Then cn(G) < cl(G). 

Proof: This is trivial when cl(G) = cxx If cl(G) < cx~ then we may proceed by 

induction on the structure of G 6 C. For G --- Z/2Z one has cn(G) = cl(G) = 1. 

If G = G1 *2""*2  Gm and cn(G~) _< cl(Gi), i = 1 , . . . , m  (see Remark 5.5(5)), 

then by Lemma 2.1(b) and by Proposition 5.6, cn(G) -- cn (G1)+ . . .  + cn(G,~) _< 

cl(G1) + . . .  + cl(Gm) = cl(G). Suppose next that G -~ A>~H, where A is a free 

abelian pro-2 group, and that cn(H) _< cl(H) (again, cn(H) is well-defined by 

Remark 5.5(5)). Then cn(g)  _< cl(G) < c~ by Lemma 2.1(c)(d). Hence we may 

apply Proposition 5.7. If rank(A) < oo and (A, H) # (Z2, Z/2Z) then it gives 

an(G) = [cn(H)/2rank(A) 1 ~ cn(H) <_ cl(G). If A ~ Z2 and H ~ Z/2Z then 

cn(G) = cl(G) = 2. Finally, if rank(A) = oc then cn(K) = 1 <_ cl(K). | 

Conclusion: Let G 6 C. Then cn(G) can be recursively computed using Propo- 

sitions 5.6 and 5.7. Applying Corollary 5.2, one can thus effectively determine 

whether G is the absolute Galois group of a semi-real closed field of finite chain 

length (i.e., whether cn(G) = 1). Likewise one can list the finitely generated ab- 

solute Galois groups of semi-real closed fields according to increasing rank. The 

following table gives the 34 maximal pro-2 Galois groups of pythagorean fields of 

rank < 6 and the associated covering numbers. Note that by Proposition 3.2(b) 

these groups are non-isomorphic. Out of them 11 correspond to semi-real closed 

fields. We denote here the free pro-2 product of e copies of Z/2Z by De. | 

G = G ( K q / K )  rank(G) cn(K) 

D1 1 1 

D2 2 2 
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G = ~ ( K q / K )  rank(G) cn(K) 

Z2:~D2 3 I 
D3 3 3 

Z22>~D2 4 1 

(Z2>~D2) *2 Dl 4 2 
Z2>~D3 4 2 

D4 4 4 

Z2>~D3 5 1 

Z3)<D2 5 1 

Z2:~((Z2)qD2) *2 D1) 5 1 
Z2>~D 4 5 2 

(Z2>~D2) *2 D1 5 2 

(Z2>~D2) *2 D2 5 3 
(Z2)~D3.) *2 D1 5 3 

Ds 5 5 

Z2>~D4 6 1 

Z23>~D3 6 1 
Z4:~D2 6 1 

Z2>4((Z2>~D2) *2 DI) 6 1 

Z~>~((Z2>~D2) *2 D1) 6 1 

(Z2>4D2) *2 (Z2>~D2) 6 2 
(Z3>~D2) *2 D1 6 2 

(Z2)q((Z2~D2) *2 D1)) *2 D1 6 2 
(Z2>~D3) *2 D1 6 2 

(Z2a>~D2) *2 D1 6 2 

Z2>~((Z2>~D2) *2 D2) 6 2 
Z2>~((Z2>~D3) * D1) 6 2 

(Z2>~D4) *2 D1 6 3 

Z2>~D5 6 3 

(Z22xD2) *2 D2 6 3 

(Z2>~D2) *2 D3 6 4 

(Z2>~D3) *2 D2 6 4 
D6 6 6 
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